Scientific update

Effect of Mechanical Stress on Individual Vimentin Filaments Studied using the C-Trap®

The paper “Nonlinear Loading-Rate-Dependent Force Response of Individual Vimentin Intermediate Filaments to Applied Strain” using LUMICKS’ C-Trap® has recently been published in Physical Review Letters. Congratulations to all the authors!

The study led by Prof. Sarah Köster, investigated the mechanical properties of the cytoskeleton in eukaryotic cells; and more specifically the intermediate filaments. They used combined optical tweezers-fluorescence microscopy to study –  for the first time – the effect of mechanical stress on individual vimentin filaments. It was found that vimentin provides strengths to cells under large deformation, acting appropriately in response to the speed of the deformation. Consequently, with different loading rates, vimentin shows different unfolding regimes.

The technique used in this paper is made commercially available by LUMICKS.

No items found.

No items found.

No items found.

Related scientific updates

Learn as much as you can by reading up on our scientific updates.

View all
Text Link
Enhancing efficacy against clear cell renal cell carcinoma through format-tuning of bispecific T cell engagers

Enhancing efficacy against clear cell renal cell carcinoma through format-tuning of bispecific T cell engagers

Scientific update
January 29, 2025
01-01-20

Text Link
Study using CTFM Published in Nature Communications

Study using CTFM Published in Nature Communications

Scientific update
June 15, 2016
01-01-20

Text Link
AFS 2.0 Paper Published in Methods

AFS 2.0 Paper Published in Methods

Scientific update
June 5, 2016
01-01-20

Text Link
Paper Using LUMICKS Technology Published in Nature

Paper Using LUMICKS Technology Published in Nature

Scientific update
July 21, 2016
01-01-20

No items found.